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Iceland is the only known terrestrial place in the subarctic North Atlantic providing a fairly continuous sedimen-
tary and plant fossil record over the past 15million years.While the basic palaeobotanical framework of this pat-
tern has been well established during the last decade, less attention has been paid to the abundant insect traces
on fossil leaves/leaflets. Here,we assess the diversity and frequency of insect herbivory on 4349 fossil angiosperm
leaves/leaflets from six plant-bearing sedimentary formations exposed at 18 localities. By combining analyses of
environmental factors, species interactions, ecology, biogeography, and the geological history, our results dem-
onstrate how patterns of herbivory have changed over time in relation to temperature fluctuations that pro-
foundly influenced levels of insect-mediated damage diversity and frequency. In addition, higher structural
complexity, particularly the establishment of species-rich herb layer communities seems to have positively influ-
enced the structure of insect communities in early late Miocene palaeoforests of Iceland.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Islands improve our understanding of the ecology and evolution of
communities in general and have been model systems of choice for bi-
ologists ever since Wallace and Darwin (e.g. Warren et al., 2015). They
normally provide excellent settings in which to make predictions
about community assembly. Particularly, vegetation characteristics,
such as the diversity and productivity of plants, which strongly influ-
ence the distribution and abundance of animals. Species-rich plant com-
munities thriving in diverse habitats provide a heterogeneous resource
base that allows a great number of herbivorous insect species to coexist,
an effect that can cascade up to higher trophic levels (e.g. Brose, 2003;
Haddad et al., 2009, 2011; Knops et al., 1999; Massad and Dyer, 2010;
Siemann et al., 1998). As a result, today, foodwebs incorporating plants,
phytophagous insects, and carnivorous insects account for up to 75% of
non-microbial global terrestrial biodiversity (Price, 2002). Thus, ecosys-
tem process rates such as herbivory may be altered significantly under
climate change (e.g. Cornelissen, 2011). Subsequent studies have docu-
menteddirect correlation between the quantity anddiversity of interac-
tions caused by insects and the temperature, also considering the effects
. This is an open access article under
of pCO2 concentration (e.g. Stiling and Cornelissen, 2007; Tuchman et
al., 2002; Zavala et al., 2013). A recent study in Panama, comparing
the past interactionswith present herbivory pattern of multiple current
sites, has confirmed that (specialized) interactions are robust indicators
for changes in herbivory (Carvalho et al., 2014). Thus, the response of
plants and insect herbivores to climate changes can be interpreted by
analyzing insect herbivore damage preserved on fossil leaves, and
used to provide feedbacks between assembly dynamics and community
structures (e.g. Currano et al., 2008, 2010; Knor et al., 2012; Wappler
and Denk, 2011; Wappler et al., 2009, 2012; Wilf and Labandeira,
1999; Wilf et al., 2001). Nevertheless, additional studies are required
to provide a comprehensive overview of the evolution of different
forms of interactions and their importance in various ecosystems
around the globe and at different geological time frames.

As such, Iceland seems to be an “ideal island” as it is the only known
terrestrial place in the subarctic North Atlantic providing a fairly contin-
uous sedimentary record over the past 15million years coupledwith an
extensive palaeobotanical record (summarized in Denk et al. (2011)), a
moderate palaeoentomological record (Wappler et al., 2014), but also
an until now unrecovered record of insect herbivore damage. Here, we
assess the diversity and frequency of insect herbivory on 4349 fossil an-
giosperm leaves/leaflets from six plant-bearing sedimentary formations
exposed at 18 localities (Table 1). The availability of such data from
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Fossil leaf sites from the Neogene of Iceland.

Age (Ma) c. 15a-e c. 12c,f,g c. 10c 9–8c 7–6h,i 4.4–3.8j–l

Formation/beds/biozones Selárdalur-Botn
Fm.

Brjánslækur-Seljá Fm. Tröllatunga-Gautshamar
Fm.

Skarðsströnd-Mókollsdalur
Fm.

Hreðavatn-Stafholt
Fm.

Tjörnes beds (Mactra
Zone)

Plant macrofossil
localities

Þórishlíðarfjall Surtarbrandsgil, Seljá Margrétarfell,
Gautshamar,
Húsavíkurkleif,
Tröllatunga,
Hólar

Hrútagil, Fell Stafholt, Laxfoss,
Veiðilækur,
Brekkuá,
Hestabrekkur,
Fífudalur, Þrimilsdalur

Skeifá

For geological and
palaeontological
background

Grímsson and
Denk (2005),
Grímsson et al.
(2007), Denk et
al. (2005, 2011)

Friedrich (1966), Denk
et al. (2005, 2011),
Grímsson (2007b)

Denk et al. (2005, 2011) Friedrich et al. (1972),
Denk et al. (2005, 2011)

Grímsson (1999, 2002,
2007a), Denk et al.
(2005, 2011)

Bárðarson (1925),
Strauch (1963),
Símonarson and
Eiríksson (2008), Denk
et al. (2011)

Number of plant macro-
and microfossil taxam

21 woody- and
2 herbaceous
angiosperms, 8
conifers, 1
liana, 2 ferns,
and 1 incertae
sedis

33 woody- and 4
herbaceous
angiosperms, 1 liana, 1
Ephedra, 9 conifers, 8
spore plants, and 10
incertae sedis

34 woody- and 31
herbaceous
angiosperms, 2 lianas, 1
Ginkgo, 7 conifers, 11
spore plants, and 13
incertae sedis

19 woody- and 5
herbaceous angiosperms, 9
conifers, 8 spore plants, 1
incertae sedis

13 woody- and 6
herbaceous
angiosperms, 6
conifers, 4 spore
plants, 1 incertae sedis

24 woody- and 43
herbaceous
angiosperms, 6
conifers, 17 spore
plants, 9 incertae sedis

Dominat macrofossils
observed (leaves)

Fagus, Tilia Acer, Alnus, Betula,
Magnolia, Rosaceae,
Salix

Acer, Alnus,
Juglandaceae,
Rhododendron

Acer, Betula, Fagus,
Pterocarya

Acer, Alnus, Betula,
Salix

Alnus, Potamogeton,
Rhododendron, Salix,
Sorbus

Vegetation typesm Backswamp-,
levee-, foothill-,
montane-,
ravine-, and
rocky outcrop
forests

Backswamp forests
and temporally
flooded lake margins,
levée forests and
well-drained lake
margins, well-drained
lowland forests and
lake margins, rocky
outcrop-, foothill-,
ravine-, and montane
forests

Aquatic vegetation,
backswamp forests and
temporally flooded lake
margins, levée forests
and well-drained lake
margins, well-drained
lowland forests and lake
margins, rocky outcrop-,
foothill-, montane-, and
ravine forests, and
meadows and
shrublands

Temporally flooded lake
margins, well-drained
lowland forests and lake
margins, foothill-,
montane-, and rocky
outcrop forests, and
meadows and shrublands

Aquatic- and swamp
vegetation,
backswamp forests
and temporally
flooded lake margins,
levée forests and
well-drained lake
margins, well-drained
lowland forests and
lake margins, foothill-,
montane-, ravine-,
and rocky outcrop
forests, and meadows
and shrublands

Aquatic- and swamp
vegetation,
backswamp forests and
temporally flooded
lake margins, levée and
well-drained lowland
forests and lake
margins, montane-,
foothill-, and rocky
outcrop forests

Climate signals of fossil
florasm,n

Warm
temperate,
fully humid
climate with
hot or warm
summers (Cfa,
Cfb)

Warm temperate, fully
humid climate with
hot or warm summers
(Cfa, Cfb)

Warm temperate, fully
humid climate with
warm summers (Cfb).
Increase in Cfc- and
Dfc-tolerant taxa.

Warm temperate, fully
humid climate with warm
summers (Cfb).

Warm temperate, fully
humid climate with
warm summers (Cfb).
Increase in
Dfc-tolerant taxa.

Warm temperate, fully
humid climate with
warm summers (Cfb
cool variant). Increase
in Cfc-, Dfc-, and ET-
tolerant taxa.

MAT (°C)m 7–9.4 9.3–12.5 5.4–7.4 5.9–7.4 3.4–5.9 4.1–7.4
No. leaves in census 249 1612 1095 498 699 196

a See also Moorbath et al. (1968).
b See also Kristjansson et al. (1975).
c See also McDougall et al. (1984).
d See also Hardarson et al. (1997).
e See also Kristjansson et al. (2003).
f See also Friedrich (1966).
g See also Grímsson (2007b).
h See also Jóhannesson (1975).
i See also McDougall et al. (1977).
j See also Aronson and Saemundsson (1975).
k See also Albertsson (1976).
l See also Albertsson (1978).
m Data taken from Denk et al. (2011).
n Data taken from Denk et al. (2013).
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Iceland now provides an excellent chance to explore whether coupling
evolutionary and ecosystem dynamics can lead towards a better under-
standing of the processes shaping past and modern ecosystems and
document shifts in trophic structures over geological time.

2. Material and methods

2.1. Palaeobotanical data

In recent monographic works on the late Cenozoic plant fossils of
Iceland, 68 taxa comprising dicot macrofossils were described, and
their systematic affinities determined (e.g. Denk et al., 2005, 2011;
Grímsson and Denk, 2005; Grímsson et al., 2007). The age of the sedi-
mentary formations, and hence of the fossil assemblages, is well
constrained due to their position between basalts. Absolute K-Ar and
Ar-Ar dates are available for most bracketing basalts. Remaining ages
have been constrained by means of palaeomagnetostratigraphic corre-
lation by Friedrich (1966), Moorbath et al. (1968), Aronson and
Saemundsson (1975), Jóhannesson (1975), Kristjansson et al. (1975),
Albertsson (1976), McDougall et al. (1977), Albertsson (1978),
McDougall et al. (1984), Hardarson et al. (1997), Kristjansson et al.
(2003), and Grímsson (2007b) (summarized in Denk et al. (2011)).
MAT values from Denk et al. (2011) are based on lower limits of mean
annual temperatures for potential modern analogues of fossil plant
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species recorded from Iceland. The limit shown here indicates the four
taxa defining the four warmest MATmin values (i.e. the four most-cold
sensitive taxa) in each formation. For a complete list of potential mod-
ern analogues see Appendix 13.1 in Denk et al. (2011). Also,
palaeoclimate estimates byDenk et al. (2011, 2013) usedmodern distri-
bution ranges of potential modern analogues of fossil taxa transferred
into “Köppen signatures”. The material investigated originates from
six plant-bearing sedimentary formations exposed at 18 localities (Fig.
1; Table 1) and combines material from historical collections stored in
the Swedish Museum of Natural History, Stockholm (S), and the Icelan-
dic Institute (Museum) of Natural History (IMNH), Reykjavík, with ma-
terial collected during several new field campaigns (1998–2010).
Unregistered specimens from the IMNH collections are marked with
the collection letters (F, HB, HP, HU, TA) and numbers given by their re-
spective collector. A single specimen is from the private collection of Dr.
J. Vinther and marked as such.

2.2. Insect damage data

We analyzed 4349 fossil angiosperm leaves/leaflets from six well-
dated stratigraphic levels. All these leaves were examined for damage
caused by arthropods and the type of damage was categorized based
on its position, size and morphology following the method of
Labandeira et al. (2007). The different damage types (DTs) were then
classified into one of eight functional feeding groups (FFGs): hole feed-
ing (HF), margin feeding (MF), skeletonization (S), surface feeding (SF),
galling (G), mining (M), piercing and sucking (PS) and oviposition (O)
as described by Labandeira et al. (2002a, 2002b, 2007). To date, over
290 fossil DTs have been identified (C.C. Labandeira, pers. Comm.,
2014). Each foliar element was photographed using a Canon EOS 350D
camera with a Canon EF-S 60 mm f/2.8 macrolens or a Nikon Coolpix
E4500. All photographs were optimized using Abobe Photoshop CS6
and Adobe Lightroom 5.
Fig. 1. Schematic map showing bedrock geology of Iceland. Geological background modified a
study are marked with numbers: (1) Þórishlíðarfjall in Selárdalur (Selárdalur-Botn Format
Vaðalsdalur (Brjánslækur-Seljá Formation, 12 Ma, mid-middle Miocene); (4) Hólar in Miðdalu
Gautshamar, (8) Margrétarfell on Drangsnes (Tröllatunga-Gautshamar Formation, 10 Ma, earl
Mókollsdalur Formation, 9–8 Ma, early late Miocene); (11) Þrimilsdalur at Hreðavatn, (12) F
Laxfoss at Norðurá, (16) Veiðilækur at Norðurá, (17) Stafholt at Norðurá (Hreðavatn-Stafholt
early middle Pliocene). For more detailed locality maps see Denk et al. (2011).
Quantitative analyses of insect damage were done using R version
3.1.0 (www.r-project.org) with the package ‘nlme’ (Pinheiro et al.,
2014). For damage diversity analyses, sample size was standardized
by selecting random subsets of foliar elements without replacement
and calculating the damage diversity for the subsample. Subsets of the
data were subjected to rarefaction using an analytic method detailed
below, which extends the solution found by Wappler et al. (2012) to
cases where individuals may belong to multiple classes and allows the
explicit reconstruction of probability distributions for the rarefied sam-
ple (Gunkel andWappler, 2015). This process was repeated 5000 times,
and the resultswere averaged to obtain the standardized damage diver-
sity for the six Neogene fossiliferous sedimentary formations.

Herbivore densities or damage metrics were the response variables
used in themodel, with percent abundance in the flora. The significance
of the effect termswas tested using Chi2-tests (command “anova” based
on sequentialmodels of “type I”). The datawere transformedwhen nec-
essary to comply with the assumptions of variance homogeneity (Bart-
lett test) and normal distribution (Shapiro-Wilk test) of the residuals,
and quasi-Poisson distribution was assumed when transformation
was unsuccessful. Tree diversity and herb diversity were expressed by
the Shannon–Wiener diversity index (H′). H′ incorporates species rich-
ness as well as relative abundances of species (Maurer and McGill,
2011).

3. Results

3.1. Overall patterns of herbivory

In total, we documented 47 DTs representing eight FFGs. The FFGs
comprise external foliage feeding (hole, margin, skeletonization, and
surface feeding), piercing-and-sucking, oviposition, galling, and mining
on 42 plant hosts, occurringwith a frequency of 5.3 to 24.1% of total her-
bivory (Table S1–S6). Of the 4349 leaves/leaflets, 680, or 15.63%,
fter Jóhannesson and Sæmundsson (1989). Localities with leaf fossils investigated for this
ion, 15 Ma, early middle Miocene); (2) Surtarbrandsgil at Brjánslækur and (3) Seljá in
r, (5) Grýlufoss at Tröllatunga, (6) Húsavíkurkleif in Steingrímsfjörður, (7) Kokkálsvík at
y late Miocene); (9) Fell in Kollafjörður and (10) Hrútagil in Mókollsdalur (Skarðsströnd-
ífudalur at Hreðavatn, (13) Hestabrekkur at Hreðavatn, (14) Brekkuá at Hreðavatn, (15)
Formation, 7–6 Ma, mid Late Miocene); (18) Skeifá on Tjörnes (Mactra Zone, 4.0–3.6 Ma,

http://www.r-project.org
Image of Fig. 1


Fig. 2. Hole feeding traces on leaves/leaflets from the Neogene of Iceland. (A) DT1 on Alnus sp. (HB_120_1). (B) DT2 on an unidentified Dicot. (S093488). (C) DT3 on Alnus cecropiifolia
(IMNH 99). (D) Curvilinear to rectilinear elongate holes (DT7) on Betula cristata (IMNH 2019). (E) Large-sized, circular perforations (DT4) on Salix gruberi (HU_42). (F) Three or more
holes at the divergence point of secondary veins from the primary veins (DT57) on Salix gruberi (HU_54). (G) Polylobate perforation (DT5) on Betula cristata (IMNH 8734). (H) Dense
pattern of elliptical holes (DT9) on Salix gruberi (HP_30). (I) Removed intercostal areas (DT78) on Alnus cecropiifolia (TA_3_1). (J) Central roundish hole, with a distinct edge,
surrounded by a wide rim (DT113) on Acer sp. (F_25) enlarged at (K). (L) DT78 on Betula cristata (IMNH 8833). (M) DT78 on Alnus cecropiifolia (IMNH 8). (N) DT4 on Dicotylophyllum
sp. (IMNH 36). (O) Removal of primary vein tissue with adjacent reaction tissue, parallel to removed area (DT68) on Betulaceae indet. (S0936685–02). Scale bars: solid black, 10 mm;
solid white, 5.0 mm; dotted, 1.0 mm.
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Image of Fig. 2


Fig. 3.Margin feeding traces on leaves/leaflets from the Neogene of Iceland. (A) Isolated, circular, excision of a leaf margin (DT12) on Fagus gussonii (IMNH 6761_1) close to the leaf apex
(white arrow), and (B) close to the leaf blade base (white arrow) (IMNH 6760). (C) Deeply trenched excision (DT15) on Salix gruberi (IMNH 6747_2). (D) Circular arc of leaf-margin
excision (DT81) on Betula cristata (S094898). (E) Completely removed interveinal tissue surrounded by remaining veinal stringers (DT26) on B. cristata (HB_71). (F) Excision of the
leaf blade extending to the midvein (DT14) on Salix sp. (IMNH 8621). (G) Black arrow indicating apex feeding (DT13) on F. gussonii (IMNH 8864). (H) DT12 at different positions on
the leaf blade (white arrows) on B. cristata (S094896). (I) Serial pattern of cuspate margin excisions separated by a short segment of leaf margin (white arrows) on F. gussonii (IMNH
8940). Scale bars: solid black, 10 mm; solid white, 5.0 mm.
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Image of Fig. 3
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displayed one ormore instances of herbivory. A total of 819 instances of
herbivorywere observed. Of the instances of herbivory recorded for the
different Iceland localities, those allocated to the external foliage feed-
ing FFGs, represented by the hole-feeding, margin-feeding,
skeletonization, and surface-feeding subgroups, provided 87% of all DT
occurrences, making external foliage feeding the dominant FFG within
the Neogene Iceland biomes. Mining and galling FFGs are constituted
for one-tenth of all DT occurrences.Minor levels of herbivorywere pres-
ent for the piercing-and-sucking and oviposition FFGs (b1%) (Table S7).

3.2. External foliage feeding

External foliage feeding is caused by larval and adult stages of man-
dibulate insects. The entire or partial thickness of the leaf tissue is
Fig. 4. Skeletonization (A–D) and surface feeding (E–H) traces on leaves/leaflets from the Ne
(DT16) on Betula cristata (IMNH 8743), enlarged at (I). (B) Removal of interveinal tissue with
Patchy, unmined skeletonized zone that adjoins and follows one side of the primary and secon
removed (white arrows) (DT21) on A. cecropiifolia (S106726). (E) Elongate, threadlike surfac
shaped surface abrasion with a well developed reaction rim (DT30) on Fagus gussonii (UMNH
developed reaction rims. (DT220) on Fagus friedrichii (IMNH 6705). (H) Surface abrasion with
black, 10 mm; solid white, 5.0 mm.
removed from the outside (Labandeira et al., 2002a). External foliage
feeding consists of hole feeding, margin feeding, skeletonization, and
surface feeding. However, unrelated insect lineages develop similar in-
ventions of the same feeding strategy and therefore it is difficult to accu-
rately identify the causal insect from such type of foliage feeding.
3.2.1. Hole feeding
Remarks.—Hole feeding is more difficult for an insect than marginal

chewing as it requires specialized mouthparts (Bernays, 1991), there-
fore, it is seen as an advanced feeding strategy and a derived character
(Labandeira et al., 2007). This subgroup of external foliage feeding rep-
resents the most abundant and diverse type of damage in the Icelandic
record (Fig. 2).
ogene of Iceland. (A) Removal of interveinal tissue with a poorly developed reaction rim
a thick (white arrows) developed reaction rim (DT17) on Populus sp. (S134362-02). (C)
dary venation (DT61) on Alnus cecropiifolia (IMNH 8543). (D) Highest orders of venation
e abrasion of constant width (DT25) on Rhododendron ponticum (TA_42). (F) Polylobate
8998). (G) Linear swaths of removed surface tissues, criss-crossing branching, with well-
a poorly developed reaction rim (DT29) on Aesculus sp. (IMNH 289_3). Scale bars: solid

Image of Fig. 4
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Image of Fig. 5
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DT represented.—DT1, DT2, DT3, DT4, DT5, DT7, DT9, DT57, DT68,
DT78, DT113.

Plant hosts.—Acer askelssonii; Acer islandicum; Aesculus sp.; Alnus
cecropiifolia; Alnus gaudinii; Alnus kefersteinii; Arctostaphylos sp.; Betula
cristata; Betula islandica; Carpinus sp.; Cercidiphyllum sp.; Comptonia
hesperia; Cornus sp.; Corylus sp.; Crataegus sp.; Cyclocarya sp.;
Dicotylophyllum sp. 1–5; Ericaceae sp.; Fagus friedrichii; Fagus gussonii;
Juglans sp.; Laurophyllum sp.; Liriodendron proccacinii; Liriodendron sp.;
Lonicera sp.; Magnolia sp.; Nuphar sp.; Nymphaeaceae indet.; Platanus
leucophylla; Populus sp.; Pterocarya sp.; Ranunculaceae indet.; Rhodo-
dendron ponticum; Rosaceae type A–C; Salix gruberi; Salix sp.; Sassafras
ferrettianum; Sassafras sp.; Smilax sp.; Sorbus sp.; Tetracentron
atlanticum; Tetracentron sp.; Tilia selardalense.

Distribution.—15 Ma (2 DTs; 7 occurrences); 12Ma (10 DTs; 300 oc-
currences); 10 Ma (7 DTs; 39 occurrences); 9–8 Ma (8 DTs; 60 occur-
rences); 7–6 Ma (8 DTs; 127 occurrences); 4–3 Ma (4 DTs; 15
occurrences).
3.2.2. Margin feeding
Remarks.—Larval and adult insects consume leaf tissue by making

roughly semicircular to trench-shaped excisions from the leaf edge
(Fig. 3). Many caterpillars and weevils, along with other insect groups,
feed along the margin of leaves and are normally associated with reac-
tion rims.

DT represented.—DT12, DT13, DT14, DT15, DT26, DT81, DT143.
Plant hosts.—Acer askelssonii; Acer islandicum; Alnus cecropiifolia;

Alnus gaudinii; Alnus sp.; Betula cristata; Betula islandica;
Dicotylophyllum sp. 1–2; Fagus friedrichii; Fagus gussonii; Magnolia sp.;
Pterocarya sp.; Rosaceae type A, C; Salix gruberi; Salix sp.; Sorbus sp.

Distribution.—15Ma (2 DTs; 4 occurrences); 12Ma (3 DTs; 26 occur-
rences); 10Ma (2DTs; 3 occurrences); 9–8Ma (4DTs; 48 occurrences);
7–6 Ma (6 DTs; 58 occurrences); 4–3 Ma (2 DTs; 11 occurrences).
3.2.3. Skeletonization
Remarks.—Skeletonization is a type of external feeding wherein the

softer parenchymatous interveinal tissue is completely removed with-
out the lignified vascular or sclerenchymatous tissues (Fig. 4A–D).

DT represented.—DT16, DT17, DT21, DT61, DT79.
Plant hosts.—Acer islandicum; Alnus cecropiifolia; Betula cristata;

Corylus sp.; Fagus gussonii; Populus sp.; Pterocarya sp.; Ranunculaceae
indet.; Rhododendron ponticum; Rosaceae type C; Salix gruberi; Salix
sp.; Tetracentron atlanticum.

Distribution.—12Ma (3 DTs; 17 occurrences); 10Ma (2DTs; 2 occur-
rences); 9–8 Ma (2 DTs; 5 occurrences); 7–6 Ma (4 DTs; 12 occur-
rences); 4–3 Ma (1 DT; 1 occurrence).
3.2.4. Surface feeding
Remarks.—Larval and adult insects consume one or more layers of

leaf blade from outside of the leaf, but do not consume the entire thick-
ness of the blade and often showwell-developed reaction rims (Fig. 4E–
H). Some insect species in the Cecidomyiidae, Chrysomelidae,
Curculionidae, and Thripidae, among others, surface feeders (Gullan
and Cranston, 2010) produce similar DTs.

DT represented.—DT25, DT29, DT30, DT201, DT220.
Plant hosts.—Acer askelssonii; Acer islandicum; Aesculus sp.; Corylus

sp.; Fagus friedrichii; Fagus gussonii; Lonicera sp.; Rhododendron
ponticum; Rosaceae sp.; Ulmus sp.
Fig. 5. Leaf mining structures on leaves/leaflets from the Neogene of Iceland. (A) Blotch mine w
Blotchmine lacking a central chamber (DT36) on Lonicera sp. (S093937-01). (D) Circular mined
inwhich the early to middle portion is coiled and contains an evenly-spaced (DT66) on Acer isla
ovoidal blotch (DT176) on Fagus gussonii (IMNH 8950_1). (G) Linear mine of minimal widt
meniscate-sinusoidal frass trail (DT93) on Acer islandicum (Coll J. Vinther), frass pattern enlar
6730_2). (K) A full-depth, serpentine mine with rounded sides (DT94) on Rhododendron pon
cross all, including major, veins (white arrows), lacking discrete size increases (DT41) on F. gu
Distribution.—15 Ma (2 DTs; 6 occurrences); 12 Ma (2 DTs; 3 occur-
rences); 10 Ma (1 DT; 3 occurrences); 9–8 Ma (1 DT; 1 occurrence); 7–
6 Ma (1 DT; 1 occurrence).

3.3. Mining

Remarks.—Leaf mining is a highly specialized form of feeding behav-
iour that gives the insect protection from both predators and dehydra-
tion. Consisting of the tunnelling within plant tissues, especially
foliage, by immature insect stages, especially larvae (Fig. 5).

DT represented.—DT35, DT36, DT38, DT41, DT66, DT90, DT93, DT94,
DT104, DT105, DT176, DT208.

Plant hosts.—Acer islandicum; Alnus cecropiifolia; Betula cristata;
Betula islandica; Dicotylophyllum sp. 2; Fagus gussonii; Populus sp.; Rho-
dodendron ponticum; Salix gruberi; Salix sp.

Distribution.—15 Ma (1 DT; 1 occurrence); 12 Ma (7 DTs; 24 occur-
rences); 10 Ma (4 DTs; 6 occurrences); 9–8 Ma (2 DTs; 2 occurrences);
7–6 Ma (1 DT; 1 occurrence).

3.4. Galling

Remarks.—Themost biologically complex of all major interactions, in
which an immature insect or mite hormonally controls the host plant's
developmental machinery by producing tissue that service the gall oc-
cupant (Fig. 6). Gallers are encapsulated by the hardened tissues of
the host plant, which surrounds a layer of nutritive tissue that is con-
sumed by an immature living in a chamber, all of which is nutritionally
supplied by co-opted vascular tissue (Shorthouse and Rohfritsch, 1992).

DT represented.—DT11, DT32, DT33, DT34, DT62, DT80, DT107.
Plant hosts.—Acer islandicum; Aesculus sp.; Alnus cecropiifolia; Betula

cristata; Betula islandica; Dicotylophyllum sp.; Fagus friedrichii; Fagus
gussonii; Rosaceae type A; Salix gruberi; Tetracentron atlanticum; Tilia
selardalense.

Distribution.—15Ma (2 DTs; 7 occurrences); 12Ma (4 DTs; 10 occur-
rences); 10 Ma (1 DT; 2 occurrences); 9–8 Ma (4 DTs; 5 occurrences);
7–6 Ma (2 DTs; 9 occurrences).

3.5. Piercing-and-sucking

Remarks.—Occurs when an herbivore targets and feeds on internal
fluid tissues such as phloem, mesophyll or epidermis, but remains on
the plant organ surface. The marks are dark and circular and normally
are randomly distributed (Fig. 7A–B).

DT represented.—DT128.
Plant host.—Betula cristata.
Distribution.—7–6 Ma (1 DT; 1 occurrence).

3.6. Oviposition

Remarks.—Endophytic oviposition is common among Odonata, Or-
thoptera, Hemiptera, Coleoptera, Lepidoptera and Hymenoptera in
modern insect groups. Female insect uses a piercing ovipositor, a
sword-like device at the tip of the abdomen for inserting eggs into
plant tissues (Fig. 7C). Although this interaction technically is not a
mode of feeding since mouthparts are not used, oviposition has a
well-established fossil record of plant damage (e.g. Laaß and Hoff,
2015).

DT represented.—DT101.
Plant host.—Cercidiphyllum sp.
ith small dispersed coprolites (DT35) on Betula islandica (IMNH 29), enlarged at (B). (C)
areas, appearing skeletonized (white arrow) (DT38) on Salix gruberi (S094631). (E) Mine
ndicum (IMNH 33_1). (F) Small mine, thin linear-curvilinear early phase of and a terminal
h increase (DT90) on S. gruberi (S134358). (H) Serpentine, tightly folded mine; with a
ged in (I). (J) Long, occasionally crisscrossing mine (DT104) on Alnus cecropiifolia (IMNH
ticum (IMNH 241). (L) Full-depth, serpentine mine with relatively smooth margins, that
ssonii (IMNH 9410). Scale bars: solid black, 10 mm; solid white, 5.0 mm.
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Distribution.—15 Ma (1 DT; 1 occurrence).

3.7. Insect damage on Iceland throughout the Neogene

In general, the linear regression showed a significant and positive re-
lationship between the number of leaves/leaflets analyzed and the
number of leaves/leaflets with traces of herbivory (R2 = 0.642, F =
8.276, df = 29, p = 0.045; Table 2). Thus, variations in composition
through time are two-fold and reveal the particular relationships be-
tween host plants and insect herbivores and illustrate changes in the
importance of different DTs or FFGs, but also reflects the response of
plant-insect feeding associations to major environmental stresses and
climate change. We found clear indications for such climate relations
and DT diversity when data from the early middle to early late Miocene
Fig. 6.Galling structures on leaves/leaflets from theNeogeneof Iceland. (A)Gallswith a thin, unh
(HB_55). (B) Circular galls occurring on the interveinal regions of the leaf lamina (DT32) on Betu
the leaf (DT33) on Fagus gussonii (IMNH 9026). (D) Circular galls occurring on the secondary v
larval chambers) onAcer islandicum (S093783-01). (E)Modestly thickenedgalls, presenting a po
gall (white arrows) (DT107) on Fagus friedrichii (IMNH 4844_1), enlarged at (G). (H) Small, h
(S134390). (I) DT80 on Rosaceae Type A (IMNH 42_3). Scale bars: solid black, 10 mm; solid w
(Langhian to Tortonian; 15–10 Ma) floras insect damage censuses are
compiled (p=0.005); however the correlation for the period from themid-
dle lateMiocene to thePliocene (9–3.8Ma) showedno significantdifferences
(p = 0.98) (Fig. 8). Although the two Miocene formations yielding the
“warmest” floras also have the highest species diversity (e.g. Denk et al.,
2011, 2013), the data show only a weak, positive correlation between floral
richness (rarefied to 195 leaves; Tables 1 and 3) and MAT index when all
sites are included (Spearman: r = 0.27; p=0.2899).

During the 15Ma interval damage diversity (9 DTs) and damage in-
tensity was low (~8%) and very generalized (~96%), except an imbal-
ance in specialized associational diversity, overwhelmingly on Fagus as
illustrated by an elevated galling frequency up to 2% (Fig. 9C). Upon
plant diversification during the 12Ma interval, plant-insect associations
became significantly more diverse in the total number of DTs (28) and
ardened central area and surrounded bya thick ring of dense tissue (DT11) on Salix gruberi
la cristata (IMNH8850). (C) Circular galls occurring on the primary veins (white arrows) of
eins of the leaf (DT34), with centrally positioned “exit holes” (white arrows) (or possibly
ckmarked surface (DT62) on F. gussonii (IMNH8998). (F) Compound, surface-pockmarked
emispherical, characterized by dark, thickened carbonized material (DT80) on S. gruberi
hite, 5.0 mm; dotted, 1.0 mm.

Image of Fig. 6


Fig. 7.Pierching-and-sucking (A–B) and oviposition (C) traces on leaves/leaflets from theNeogene of Iceland. (A) Distinctive ellipsoidal to spheroidal scale-insect impressionmarks (white
arrows) on epidermal tissues causing a roughened surface (DT128) on Betula cristata (IMNH 8614), enlarged at (B). (C) Lenticular to ovoidal scars with a prominent reaction rim (white
arrows) (DT101) on Cercidiphyllum sp. (IMNH 311_2). Scale bars: solid black, 10 mm; solid white, 2.0 mm.
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greater host specialization occurred, as evidenced by the highest levels
of total and leaf-mine DT diversity (Fig. 9B). Particularly, Salix gruberi
exhibits a preponderance ofmining (11.2%) and secondarily external fo-
liage feeding (5%).

A major floristic and climatic change is encountered in the 10 Ma
formation, with a sudden appearance of many herbaceous plants that
significantly re-structured the organisation of the plant community in
distinct layers (comp. Denk et al., 2011: Figs. 5.6, 6.5). Both affect the
structure of insect communities coupled with a significant climate
cooling in the early late Miocene, and the lowest values of herbivory
during the studied interval (5.3%; Figs. 8, 9). Nevertheless, several
warmth-loving elements persisted, including Platanus, Pterocarya, and
Tilia. The two overwhelmingly herbivorized taxa, in rank order, were
Pterocarya and Alnus cecropiifolia. Pterocarya consists of only 3.3% of
the specimens but accounted for 14.2% of all instances of herbivory.
Analogous values for Alnus cecropiifolia are 10% of specimens, 12.1% of
all instances of herbivory. All other plant hosts exhibited approximately
an order-of-magnitude less herbivory or absence of herbivory, when
compared to that of Pterocarya and Alnus.

Even though compositional changes within species in the sedimen-
tary formations reflect a shift from warm temperate to cool temperate
conditions from the late middle Miocene to the Pliocene with a further
stepwise cooling (Fig. 8), floras preserved in strata between 9 and 6Ma
show an opposing trend assuming that herbivore communities were
largely driven by canopy and herb layer characteristics. Damagemetrics
within the Skarðsströnd-Mókollsdalur Formation (9–8 Ma) and
Hreðavatn-Stafholt Formation (7–6 Ma) indicate a significant spatial
Table 2
Correlations between plant host's relative abundance and insect damage.

% abundance in flora vs. Residual SE R2

Damage frequency 22.63 0.642
Mine frequency 16.23 0.1206
Gall frequency 10.56 0.7388

Total DTL 22.4 0.3153
Specialized DTL 17.9 0.7344
Mine DTL 14.9 0.2594
Gall DTL 20.59 0.00592

Total DTO 22.75 0.000631
Specialized DTO 16.43 0.1915

Results fromR's linearmodel functionwith percent abundance in theflora as the independent v
are at 25 leaves. Total and specialized DTO are at 5 DT occurrences. DTL, number of damage
occurrences.
Values shown in bold indicate significance for α ≤ 0.05.
trend, with plant (herb) diversity (H′) increasing alongside damage
type occurrence (DTO) abundance, affecting both general aswell as spe-
cialized damage types (Fig. 10). Particularly, galling damage occurring
on multiple hosts and in many cases at high densities on the foliar sur-
face (Fig. 6B), whereas leaf-mine DT diversity shows an overall decreas-
ing trend since 10 Ma (Fig. 9B). A second significant drop in diversity
and abundance of plant-insect interactions characterizes the transition
between the latest Miocene (7–6 Ma) and Pliocene (4.0–3.6 Ma), re-
corded in the Tjörnes beds (Figs. 8, 9A), with the lowest levels of special-
ized foliage feeding (0.5%) and the total disappearance of gall-inducing
taxa and leaf-mining larvae.

4. Discussion

In our study we focus on understanding the dynamic of an island
ecosystem with regards to plant-insect relationships. As Iceland is the
only place in the subarctic North Atlantic providing a fairly continuous
terrestrial sedimentary and plant fossil record over the past
15million years, we are able to show the dynamics of an ecosystemdur-
ing different geological time frames of the Neogene in this part of the
globe. Most significantly, the relationship between folivores and plants
are two-fold in the present study and provide (1) insight into the biotic
respond to climate change, and (2) changes of community structures.

Generally, the Miocene floras of Iceland belonged to a widespread,
Neogene, northern hemispheric forest vegetation whose representa-
tives are restricted to East Asia, North America and western Eurasia at
the present time, and represents broad-leaved (deciduous) to
F statistic P value df

8.276 0.045 29
1.235 0.02953 9

36.76 4.012e-05 13

0.944 0.03393 29
1.427 0.02478 18
3.153 0.01095 9
0.07742 0.07852 13

0.01831 0.08933 29
4.5 0.04727 19

ariable and damagemetrics as thedependent variable. Total, specialized,mine, and gall DTL
types standardized by leaves; DTO, number of damage types standardized by damage

Image of Fig. 7


Fig. 8. Box-plots based comparison of mean annual temperature (MAT) estimates and the number of damage types (DTs) standardized. (A) Total DT diversity within each fossiliferous
sedimentary formations on Iceland (standardized to 195 leaves/leaflets, represented by open green circles). (B) Lower limits of MATs for potential modern analogues of fossil species
recorded from Iceland (represented by open circles, modified from Denk et al., 2011).
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coniferous mixed forest (e.g. Denk et al., 2011), at respectively 15, 12,
10, 9–8 and 7–6 Ma. Furthermore, these floras suggest a humid warm
temperate climate probably attributable to an increase in northward
energy transport in the North Atlantic realm that was likely related to
an already effective Gulf Stream, causing a delayed climatic decline fol-
lowing the Mid-Miocene Climatic Optimum (MMCT) in the subarctic
North Atlantic region (Denk et al., 2013). The results presented here fa-
vour the hypothesis that such climatic conditions positively affect eco-
system process rates such as herbivory as shown by a diversity peak of
recovered plant fossil taxa increasing markedly from 35 to 65 taxa in
the middle Miocene (mainly occurring within the Brjánslækur-Seljá
Formation, c. 12 Ma) (Denk et al., 2005, 2011). Together with plant di-
versity, overall insect herbivory in leaves is known to be greatest in
tropical lowland rainforests (e.g. Coley and Barone, 1996; Hunter and
Price, 1998). Insect herbivory has been widely discussed as an explana-
tion for the maintenance of high tree species diversity (Leigh et al.,
2004), in the so-called Janzen-Connell hypothesis (Connell, 1971;
Janzen, 1970) and many recent experiments have proven this
Table 3
Floral diversity and evenness for the single time horizons.

Age (Ma) S Diversity at 195 leaves Diversity error

15 12 11.4 1.1
12 35 23.0 2.2
10 28 20.8 1.9
9–8 23 17.9 1.6
7–6 20 14.1 1.6
4.0–3.6 10 11.0 0.1
mechanism (Comita et al., 2010; Johnson et al., 2012; Mangan et al.,
2010). In the early and middle Eocene, leaf floras from North America,
Patagonia, and Europe show a marked increase in the amount and di-
versity of insect damage and specialized associations (Wilf et al.,
2005; Currano et al., 2008, 2010; Wappler et al., 2012). This increase
in diversity appears to be highly correlated with rising temperature,
CO2 levels, as well as plant diversity and plant selection by insects is in-
fluenced by pCO2 concentrations due to its indirect effect on plant qual-
ity for herbivores and natural enemies (e.g. Lindroth, 2010). So,
indirectly it is possible to relate changes in herbivory that are altered
significantly under climate change (e.g. Cornelissen, 2011; Lau and
Tiffin, 2009), but also allow assessing changes in insect diversity
when body fossils on Iceland are rare, during a period that witnessed
the most significant Cenozoic climate changes (e.g. Su et al., 2015;
Wappler et al., 2009; Wappler and Denk, 2011; Wappler et al., 2014;
Wilf, 2008).

According to the global deep-sea δ18O record, the late middle Mio-
cene climatic optimum was followed by a gradual cooling and re-
Pielou's J evenness Shannon index (H′) Fisher's alpha (α)

0.43 1.09 2.91
0.71 2.55 6.53
0.71 2.39 5.47
0.58 1.85 5.26
0.63 1.91 4.07
0.49 1.17 2.52

Image of Fig. 8
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establishment of a major ice-sheet on Antarctica by 10 Ma (e.g. Zachos
et al., 2001, 2008). Mean δ18O values then continued to rise gently
through the late Miocene until the early Pliocene, indicating additional
cooling and small-scale ice-sheet expansion in the Arctic. Besides
these climate cycles and long-term oceanic conditions the signal within
the Tröllatunga-Gautshamar Formation (~10 Ma) encountered a major
floristic change that demonstrated shifts in the trophic structures over
time, with a sudden appearance of many herbaceous plants, particular
an increase in Cfc- and Dfc-tolerant taxa. This trend is also coupled
with a proportional increase of specialized DTOs during food-web as-
sembly relative to generalized DTOs. Across broader scales tree and
herb layer diversity often show linkages (e.g. Barbier et al., 2008;
Fig. 9. Box plots of DT diversity within each fossiliferous sedimentary formations on Iceland. (A
Scherber et al., 2014; Vockenhuber et al., 2011), as herb layer contains
most of a forest's plant diversity (Gilliam, 2007), and consequently
more-intense biotic interactions in forest ecosystems could be ob-
served (Basset et al., 2012; Coley and Barone, 1996; Dyer et al.,
2007; Pennings and Silliman, 2005). Thus, the plant-insect associa-
tional record between 9 and 6 Ma shows an opposing trend, as doc-
umented in the peak of gall occurrences during that period,
probably related to an increased moisture transport from low to
high northern latitudes by the Loop Current–Gulf Stream causing
water stress, which may be a disadvantage to the palaeoflora, while
giving support for galling insects, as described for themodern insects
by Blanche and Westoby (1995).
) Specialized types of damage. (B) Mining. (C) Galling; standardized to 195 leaves/leaflets.

Image of Fig. 9


Fig. 10. Effects of plant diversity (H′) (based on the fossil pollen andmacrobotanical record) on the number of damage types standardized by damage occurrence (DTO). (A) BulkDTO data.
(B) Specialized DTO data. Blue lines show model predictions, grey fields show ±1 SE of the predictions.
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Whereas the overall trend, preserved in strata between b10 and
3 Ma generally reflect a further stepwise cooling followed by a signifi-
cant drop in diversity and abundance of plant-insect interactions in
the Pliocene and the complete loss of the overwhelmingly host special-
ized damage types, as a consequence of a lack of suitable hosts, like
Fagus sp. and Quercus sp., that cause extinction of these types of func-
tional feeding groups on Iceland during the latest Miocene and Plio-/
Pleistocene transition.

5. Conclusions

Palaeoecological studies that combine analyses of environmental
factors, species interactions, ecology, biogeography, and geological his-
tory may better estimate the feedbacks between assembly dynamics
and community structures and provided new insights into the forma-
tion of ecological communities. This study presents an extensive dataset
of palaeo-herbivory combining for the first time quantitative studies of
middle Miocene to Pliocene fossil plant-animal interactions on Iceland.
Our results demonstrate how patterns of herbivory have changed over
time in direct relation to climate change that profoundly influenced
levels of insect-mediated damage diversity and frequency. In addition,
higher structural complexity, particularly the establishment of spe-
cies-rich herb layer communities seem to have positively influence the
structures of insect communities in Icelandic palaeoforests.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gloplacha.2016.05.003.
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